摘要:采集关键电力设备接电的实时温度,克服有线温度监测系统存在的诸如线路多,布线复杂,维护困难等不足,将无线无源传感器与Zigbee无线通信技术相结合,将物联网技术及移动互联网云端与电力自动化 技术相结合,云边协同,实现智能化无线测温系统方案。无线测温系统具有结构简单可靠,扩展性好,布点灵活等特点,可以结合行业深层需求及其他技术,进一步在电厂推广应用。
关键词:无线测温;Zigbee;物联网;云端;无线无源传感器
0引言
发电行业是个庞大复杂的工业生产系统,大量使用中低压开关柜、高压电动机、变压器等电气设备,对自动化程度和连续生产的高要求,不仅对其供电可靠性要求越来越高,而且对发电行业系统内关键的配电及高压电动机设备的稳定可靠性也提 出了更高的要求。电气设备在长期运行过程中,电气一次模块触点和连接等部位因老化或接触电阻过大而发热,进而导致接头异常升温甚至引发燃爆事故。电厂电气设备安装密集,电动机也都是各工艺段的关键设备,此类设备损坏及引起的事故可能会引发下游大范围供电线路或重要用电设备突然 停电,造成巨大的直接和间接经济损失。
近年来,传感器及物联网技术,设备的在线监测,及大数据分析等技术的快速发展,结合发电行业的特点及需求,新技术的研究与应用对解决此类问题提供了新的方案
1关键新技术的研究
针对上述提出的问题,结合温度传感器,Zig bee 无线传输,云应用及大数据分析技术现状,提出了多种新技术的解决方案,并结合实际需求提出应用方案。
1.1温度传感器选择
传统的测温方法包括通过热电偶、热电阻、半导体温度传感器等测温,温度传感器与测温仪之间采用金属导线传输温度信号。由于温度传感器直接安装于高压接点、触点上,其传输温度信号的金属导线的绝缘性能无法保证,同时,对于改造类项目,实施难度较大。目前无线测温方法包括感应供电无线测温、CT取电测温、电池供电无线测温方式及红外在线测温方式。各无线测温技术性能比较如表1所示。
相比其他测温方式,感应供电测温具有测温速度快,周期短,免维护,使用寿命长,故障率低等特点。
1.2无线传输技术选用
无线通信是利用电磁波信号在自由空间中传播的特性进行信息交换的一种通信方式,其中应用较为广泛及具有较好发展前景的短距离无线通信标准有Zigbee,蓝牙(Bluetooth)、无线宽带(Wi-Fi)、超宽带(UWB)和近场通信(NFC)。
其中,Zigbee技术是一种具有低速率、近距离、低功耗、低复杂度、通信可靠、网络容量大等特点的无线通信技术。Zigbee协议由IEEE802.15.4任务小组与Zigbee联盟共同制定,其PHY层和MAC层采用IEEE802.15.4协议标准,网络层由Zigbee联盟制定,应用层则允许根据用户的应用需求进行开发。
Zigbee有三个工作频段,本项目采用的无源测温传感器采用2.4 GHz频段,该频段的数据传输速率为250 Kbps,其分为16个信道,目前为全球通用,且免申请免付费。在通信上,采用免冲突多载波信道接入(CSMA-CA)方式,有效避免了无线电载波间的冲突,并采用密钥长度为128位的加密算法对数据进行加密,确保了通信数据的安全保密性。并且,Zigbee设备能耗低,发射输出为0~3.6 dBm[3IoZigbee支持星形和网格对等两种网络拓扑结构。实际应用可将两种拓扑结构结合,使用混合型网络结构,簇树状网络结构,其网络示意图如图1所示。
簇树状网络中,采用分布式地址分配方案来分配网络地址,即为每一个父设备分配一个有限的网络地址段,并由父设备分配给其自身。对于给定深度的节点,作为父设备所能分配的自区段地址数为Cskip(d),计算公式为
利用Cskip(d)作为偏移,向子设备分配网络地址。父设备为它的第一个子簇头设备分配一个比自己大1的地址,随后分配给子簇头设备的地址将以Cskip(d)为间隔,以此类推为所有的子簇头分配地址。
1.3移动互联网与云技术选用
传统的系统监控及运行一般以集中式或者分布式的SCADA系统应用为主,并在控制室内由操作员及工程师使用。随着移动互联网及智能手机的发展和应用,通过传感器监测到的关键设备的各种实时数据也可以通过无线网络传输到远方云服务器,特别是对于区域广,布线困难的区段,数据的获取将会变得更加方便和容易。其二,传输到云服务器上的数据比起传统专门的服务器存储,成本更低,可靠性更高,供不同用户使用更方便。其三,通过无线网络传输到云服务器的数据,可以通过智能手机的APP显示出来,并通过不同的功能模块定制
化实现。其四,根据不同用户的需求和设备使用情况,可以对存储的数据按照既定算法进行数据分析,及早通过数据对比发现异常数据,并给予用户提示或者告警信息,减少及降低设备故障甚至事故的发生。
2具体应用方案
常见的两台60 MW或者100 MW机组的火电厂,一般使用数百台中低压开关柜及使用大量的辅机电动机,对开关柜及高压电动机关键部位进行智能测温改造。经过技术对比,使用无线无源“温度传感器+Zigbee”温度监测系统,准确地采集关键设备及设备关键部位的温度信号,通过智能网关,可以接入既有的光纤通信网络,实现网络及数据共享,通过控制中心的无线测温监测系统,实现温度信号的实时监测,超温部位及设备定位,超温报警,保证关键设备寿命及生产连续性,减少及避免潜在事故的风险。并且,依靠云服务及边缘系统的云边协同,实现了测温信号的移动运维,不仅可以通过智能手机监测到关键设备的温度信号,并能 在超温时自动发出报警信号,及时推送到具体负责 人员的智能手机终端,实现高效的问题处理,较大地降低配电柜设备事故风险,保证供电可靠性、生产连续性及安全生产。初设应用方案的基本架构如图2所示。
2.1无线无源“温度传感器+Zigbee”
经过技术对比,选定Easergy TH110温度传感器,其主要性能参数如表2所示。
Easergy TH110自供电基于网络电流,与测量点直接接触可以确保高性能的、准确的温度监测。并且,TH110非常小巧不占用空间,便于安装调试及后期维护。
TH110采用Zigbee节能型通信协议,Easergy TH110确保有可靠和强大的通信能力,可以用来创建共享的操作解决方案的图片及在项目应用中的场景如图3所示。
建议比较重要的工艺段相关配电室开关柜及高压电动机都安装TH110的温度传感器,包括各类水泵、风机、浆液循环泵、氧化风机等区间。
2.2测温系统架构设计
由于测温传感器分布区域广,数量多,测温系统架构采用以太网作为主要架构,并可使用既有的视频监控系统网络设备,节省成本及较大地降低施工难度。
——现场的各TH110温度传感器通过Zigbee协议无线传输到温度接收装置。
——温度接收装置通过Modbus RTU通信协议将温度信号传输到各个现场的网关。网关将协议转换为Modbus TCP规约,并经现场的以太网交换机,通过光纤通道传输到控制中心的工作站中。
——现场的千里眼服务器也接入通信网络,将各TH110的测温数据上传到云平台,以供智能手机的千里眼APP使用。
2.3测温监测系统SCADA的设计
测温监测系统SCADA操作员工作站可以置于控制中心内,通过既有网络由现场测温接收装置上传的温度数据。监测工作站可以通过简洁明了的—次系统,清晰地显示各监测点的实时温度数据,及各个区间的具体架构。所有区间测温传感器的历史数据都可以通过SCADA系统显示出来,便于用户与常规温度数据相比较。当传感器测温数据高于设定的报警值,SCADA系统会发出报警指示给操作员,并可以定位到具体的设备及安装部位, 方便工程师去现场进行查看及风险评估,消除潜在故障的风险。
2.4云平台“千里眼”系统的应用
IOT由IT信息技术和OT运营技术深度融合,千里眼APP系统是物联网QT技术的应用体现之一。图4为千里眼APP在其他行业的应用截图。
设计方案中,通过既有电力设备关键部位加装测温传感器,独立测温SCADA系统及千里眼APP 云边端协同应用,实现设备运行数据的进一步透明化,并提高系统管理水平。将电厂内各安装TH110温度传感器的开关柜、变压器及高压电动机关键部位的温度数据进行处理,为配电设备运行状态监 视、运行维护作业管理和设备资产管理提供“互联网+”灵活应用方案。而且,千里眼可以提供报警管理,可以根据严重程度区分不同等级的报警,并通过短信通知用户,让用户在获取报警信息,并可以通过手机APP确认和记录报警事件,筛
选和导出报警信息,形成专门的报告,预防事故及故障的发生。除了智能手机端显示温度型号及提供报警之外,千里眼还可提供资产快查及工单派工的功能,提高用户的运维效率及智能化程度。其他行业的试点应用,监测到了数次设备的异常温度信号,并且及时检修维护,成功避免了重大事故的发生。
3安科瑞温度在线监测系统概述
电气接点在线测温装置适用于高低压开关柜内电缆接头、断路器触头、刀闸开关、高压电缆中间头、干式变压器、低压大电流等设备的温度监测,防止在运行过程中因氧化、松动、灰尘等因素造成接点接触 电阻过大而发热成为安全隐患,提高设备安全保障,及时、持续、准确反映设备运行状态,降低设备事故率。
Acrel-2000T无线测温监控系统通过RS 485总线或以太网与间隔层的设备直接进行通讯,系统设计遵循guojibiaozhunModbus-RTU、Modbus-TCP等传输规约,安全性、可靠性和开放性都得到了较大地提高。该系统具有遥信、遥测、遥控、遥调、遥设、事件报警、曲线、棒图、报表和用户管理功能,可以监控无线测温系统的设备运行状况,实现快速报警响应,预防严重故障发生。
3.1应用场所
适合在泛在电力物联网、钢厂、化工、水泥、数据中心、医院、机场、电厂、煤矿等厂矿企业、变配电所等电力设备的温度监测。
3.2系统结构
温度在线监测系统结构图
3.3系统功能
测温系统主机Acrel-2000T安装于值班监控室,可以远程监视系统内所有开关设备运行温度状态。系统具有以下主要功能:
3.3.1温度显示
显示配电系统内每个测温点的实时值,也可实现电脑WEB/手机APP远程查看数据。
3.3.2温度曲线
查看每个测温点的温度趋势曲线。
3.3.3运行报表
查询及打印各测温点时间的温度数据。
3.3.4实时告警
系统能够对各测温点异常温度发出告警。系统具有实时语音报警功能,能够对所有事件发出语音告警,告警方式有弹窗、语音告警等,还可以短信/APP推送告警消息,及时提醒值班人员。
3.3.5历史事件查询
能够温度越限等事件记录进行存储和管理,方便用户对系统事件和报警进行历史追溯,查询统计、事故分析等。
3.4系统硬件配置
温度在线监测系统主要由设备层的温度传感器和温度采集/显示单元,通讯层的边缘计算网关以及站控层的测温系统主机组成,实现变配电系统关键电气部位的温度在线监测。
名称 | 外形 | 型号 | 参数说明 |
系统组态软件 | Acrel-2000/T | 硬件:内存 4G,硬盘 500G,以太网口。 显示器:21 寸,分辨率 1280*1024。 操作系统:Windows 7 64 位简体中文旗舰版。 数据库系统:Microsoft SQL Server 2008 R2。 通讯协议:IEC 、IEC 、Modbus RTU、Modbus TCP 等guojibiaozhun通信规约 | |
智能通信管理机 | Anet-2E4SM | 通用网关,2路网口,4路RS485,可选配1路LORA,带电告警功能,支持485,4G从模块扩展。 | |
无线测温集中采集设备 | Acrel-2000T/A | 壁挂式安装 标配一路485接口、一路以太网口 自带蜂鸣器告警 柜体尺寸480*420*200 (单位mm) | |
Acrel-2000T/B | 硬件:内存4G,硬盘128G,以太网口 显示器:12寸,分辨率800*600 操作系统:Windows7 数据库系统:Microsoft SQL Server 2008 R2 可选Web平台/APP服务器 柜体尺寸为480*420*200(单位mm) | ||
显示终端 | ATP007 ATP010 | DC24V供电;一路上行RS485接口;一路下行RS485接口; 可接收20个ATC200/1个ATC400/1个ATC450-C。 | |
ARTM-Pn | 面框96*96*17mm,深度65mm;开孔92*92mm; AC85-265V或DC100-300V供电; 一路上行RS485接口,Modbus协议; 可接收60个ATE0;配套ATC200/300/450。 | ||
ASD320 ASD300 | 面框237.5*mm,深度67mm;开孔220*165mm; AC85-265V或DC100-300V供电; 一路上行RS485接口,Modbus协议; 可接收12个ATE0;配套ATC200/300/450。 | ||
智能温度巡检仪 | ARTM-8 | 开孔88*88mm 嵌入式按照; AC85-265V或DC100-300V供电; 一路上行RS485接口,Modbus协议; 可接入8路PT100传感器,适用于低压开关柜电气接点、变压器绕组、点击绕组等场合的测温; | |
ARTM-24 | 35MM导轨安装; AC85-265V或DC100-300V供电; 一路上行RS485接口,Modbus协议; 24路NTC或PT100、1路温湿度测温、2路继电器告警输出,用于低压电气接点、变压器绕组、点击绕组等场所测温; | ||
无线收发器 | ATC450-C | 可接收60个ATE100/ATE100M/ATE200/ATC400/ATE100P/ATE200P传感器数据。 | |
ATC600 | ATC600有两种规格;ATC600-C可接收240个ATE100/ATE100M/ATE200/ATC400/ATE100P/ATE200P传感器数据。ATC600-Z做中继透传。 | ||
电池型无线测温传感器 | ATE100M | 电池供电,寿命≥5年;-50℃~+125℃; 精度±1℃;470MHz,空旷距离150米; 32.4*32.4*16mm(长*宽*高)。 | |
ATE200 | 电池供电,寿命≥5年;-50℃~+125℃; 精度±1℃;470MHz,空旷距离150米; 35*35*17mm, L=330mm(长*宽*高,三色表带)。 | ||
ATE200P | 电池供电,寿命≥5年;-50℃~+125℃; 精度±1℃;470MHz,空旷距离150米,防护等级IP68;35*35*17mm, L=330mm(长*宽*高,三色表带) 。 | ||
CT取电型无线测温传感器 | ATE400 | CT感应取电,启动电流≥5a;-50℃~125℃;精度±1℃470MHz,空旷距离150米; 合金片固定、取电;三色外壳;25.82*20.42*12.8mm(长*宽*高)。 | |
有线温度传感器 | PT100 | 用于低压接点测温时,具体封装、精度、线制、线材、线长与供应商联系; 用于变压器、电机绕组测温时,建议变压器或电机内部预埋好Pt100 | |
NTC | 用于低压接点测温时,具体封装、精度、线制、线材、线长与供应商联系; 用于变压器、电机绕组测温时,建议变压器或电机内部预埋好 |
4总结及应用
无线测温系统在发电行业的应用方案,配套管理系统及千里眼APP提供温度异常告警、实时设备温度采集、周期性温度监测及报表、设备状态评估等功能,能减少及避免因温度导致的重大故障的发生。其次,随着技术的发展,其他传感器的应用,从不同角度获得关键设备及系统的数据,从而更客观地进行设备及系统监测,可以作为下步研究工作方向之一。而且,智能化、万物互联等新技术的应用, 会对运维人员的能力及习惯提出更高的要求,智能化系统需要进一步提高用户的实际体验,开发更多更贴近用户的功能,比如资产管理,工单处理,故障排除等,得到更多的应用。
参考文献
[1]曹军威.电力物联网概论.中国电力出版社,2020.
[2]刘慧瑾,张大鹏.基于物联网无线测温系统在电厂的应用和研究.
[3]安科瑞企业微电网设计与应用手册.2022.05.